热门标签:代写本科论文 写作发表 工程师论文 代写一篇论文多少钱
当前位置: 代写一篇论文多少钱 > 社会哲学论文 > 谈数学史视角的球体积教学设计思考

谈数学史视角的球体积教学设计思考

时间:2018-08-09 11:18作者:怡然
本文导读:这是一篇关于谈数学史视角的球体积教学设计思考的文章,对牟合方盖法计算球体积教学中出现的三个难点——牟合方盖的由来、抽象牟合方盖的理解及牟合方盖体积的计算进行逐个突破,以期对教学设计有启发和借鉴作用。

  摘要:对牟合方盖法计算球体积教学中出现的三个难点——牟合方盖的由来、抽象牟合方盖的理解及牟合方盖体积的计算进行逐个突破,以期对教学设计有启发和借鉴作用。

  关键词:球体积,牟合方盖,数学史
 

  一、问题的提出

  球体积公式是高中数学基本内容,不同的推导方法常常会达到不同的教育效果。有的教师通过切片求极限的方法得出球体积公式,培养了学生极限思想。有的教师利用球面小锥体结合球表面积公式推得球体积公式,培养了学生近似求和的思想。有的教师借此机会探寻古今中外的方法,向学生展示人类智慧的成果。比如,教师通过截面原理(祖暅原理)的引入,验证得出半球体积等于同底等高圆柱体挖去同底等高圆锥体的体积(公理法)。这种处理方式尽管介绍了中国古代的重要原理,却舍弃了知识生动的发生发展过程,未能充分展现其教学功能和文化功能。若能进一步引入中国古代计算球体积的重要立体———牟合方盖,利用牟合方盖计算球体积,不仅可以让学生经历古人“以方套圆,化圆为方”的求解历程,拓展学生的思维,还是一次增强民族自豪感的文化教育和爱国教育。有教师尝试向学生讲授上述各种推导方法,从课后学生的问卷调查[1]来看,牟合方盖法“太深奥,难以理解,自己根本不可能想到,即使勉强看懂了,也无法掌握”。何以古人一千多年前的推导方法不能为学生接受?学生在理解上遇到哪些困难?只有知道了这些,教师才能更好地进行针对性的教学设计。

  二、牟合方盖法计算球体积的教学难点及其对策

  有学者将数学史融入数学教学分为四种方式:附加式、复制式、顺应式和重构式。[2]对于“深奥,难以理解”的牟合方盖法,教师首先应该理解史料,并按照学生的数学实际找到教学中的难点,才能进行创造性的教学设计,将数学史料更好地融入教学,最大化地发挥其教育功能。

  难点1:构造牟合方盖的缘由

  球体积的计算是古代几何学中的一个难题。为了获得球体积的精确公式,东西方都竭尽了好几代人的智慧,利用当时所有的科学成果,创造出许多重要的数学方法和精巧的几何构造物。在西方有古希腊阿基米德的力学方法和17 世纪意大利人卡瓦列利的不可分量方法,而在东方则有我国刘徽所构造的牟合方盖。牟合方盖不是自然无形体的摹写,而是为论证的需要构造出来的特殊形状的几何体。因而,它的发明是以深刻的数学思想与方法为指导的,此数学思想即截面原理,就是我们现在所说的“祖暅原理”。

  古人对截面原理早有深刻理解。从《九章算术》“商功章”各求积术的编排顺序来看,作者有意将所有圆体安排在相应方体之后,即按方堢壔(方柱体)与圆堢壔(圆柱体)、方亭(方台)与圆亭(圆台)、方锥与圆锥的顺序叙述。古人先计算方体体积,进而利用截面原理,通过“方体体积∶圆体体积= 截面方形面积∶截面圆面积”得出圆体体积(如图1)。

  类似地,在计算球体积时,古人仍试图利用截面原理,只是还缺一个重要的辅助工具,即球的方体“外套”。这个外套的体积较易求得,进而利用截面积之比求得球体积。

  刘徽之前的古人使用的球外套为圆柱,“圆囷为方率,浑为圆率”,而圆柱的外套则为正方体(如图2,d表示球直径)。按照刘徽推测,古人认为球体积∶圆柱体积= 圆柱体积∶正方体体积=π∶4(这里 π 取近似值3),从而推知球体积 (《九章算术》的《少广》章有所谓的“开立圆术”,即已知球体积,求其直径的方法。开立圆术曰:置积尺数,以十六乘之,九而一,所得开立方除之,即丸径。以现代公式表达,即 由此推知 ,V代表球体积,d表示球直径)。刘徽指出《九章算术》中的该公式是不正确的,并在“开立圆术”注文中指出了一条推算球体积公式的正确途径。他创造了一个新的立体形———牟合方盖(“方”,指截面为正方形;“盖”,原为白茅编成的覆盖物,后用作器物上的盖子;“牟合方盖”一词可谓语意双关,它既指球的四面切合的方外罩,又指它形似上下结合的两把方伞[3]),并利用牟合方盖来求得球体积。

  图1

 

  图3


  我们不妨来重温刘徽创造牟合方盖的过程。图2 中,圆柱与正方体的截面面积比始终为 π∶4,按照这种思路给球套的外套也应有这种截面性质。刘徽发现以圆柱套球,圆与外方仍有两面不切合(图3(1)),如要达到四面都切合,则按垂直方向再套上一个圆柱即可,经过一番思考,刘徽终于发明了球的牟合方盖(图3(2)为半个牟合方盖)。

  刘徽发明牟合方盖,正是古人“以方套圆,化圆为方”的解题思路,而最终能由方求圆则依赖截面原理这一重要公理。如果教师能在呈现牟合方盖前讲以上这些作为铺垫,学生就能对“为什么要引入牟合方盖”有所体会。

  难点2:如何理解抽象的牟合方盖

  一般的教学材料中呈现的牟合方盖有两种情形(如图4):通过图4(1)正方体中两垂直圆柱的公共部分,或者图4(2)中两根垂直的相同圆柱的公共部分,来得出图4(3)中的牟合方盖。无论(1)图还是(2)图,要让学生想象出相交公共部分是(3)都不是一件容易的事情。这时学生就会感觉牟合方盖太抽象,不易理解。有些教师可能会求助于3D多媒体,有些教师可能会求助于实物制作。其实,教师不妨沿用刘徽创造出牟合方盖的思想,即截面以正方形外切圆形,让学生想象牟合方盖的外观。如图5 所示,让学生想象一刀一刀平行地切球体,得到一个个大小不同的圆,以圆的外切正方形代替圆,保证这些正方形中心重合,对角线叠合,这样就形成了牟合方盖的外形(这里教师也可以让学生画出牟合方盖的三维图来加深理解)。

  图4

 

  图5


  经历过这番想象与操作后,再向学生介绍图3和图4,学生更能接受牟合方盖的形象。这里教师需要对学生提出更进一步的要求,以便为计算牟合方盖体积做准备。球内切牟合方盖,相切于哪些部分?教师可通过平面的方圆相切图帮助学生理解,相切部分在牟合方盖的面上,正好是球的两个垂直大圆。

  难点3:如何计算牟合方盖的体积

  刘徽指出,在每一高度上的水平截面圆与其外切正方形的面积之比都等于 π∶4,因此球体积与牟合方盖体积之比也应该等于 π∶4。牟合方盖的体积怎么求呢?最终刘徽没有能够解决,他说“敢不阙疑,以俟能言者”,他提出问题,等待后人来解题。尽管刘徽没有推证出球体积公式,但他为后人指出了解决球体积的正确方向。

  两百年后,刘徽的问题终于被祖冲之和他的儿子祖暅解决了。我们来简单回顾他们的解决方法,考虑到牟合方盖的对称性,祖暅计算其1/8 体积,将其放于小正方体中考虑(图6)。祖暅不直接求1/8牟合方盖体积,转而求小正方体中扣除1/8 牟合方盖后的剩余体积。常规说来,剩余立体形状不规则,更不易求。但是祖暅利用截面原理,发现剩余部分体积应等于一个“阳马”(一棱垂直于底面,且底面为正方形的棱锥,图7(3)中椎体O-ABCD即为一个倒置的阳马)的体积,而阳马体积又等于小正方体体积的1/3,从而得出1/8 牟合方盖的体积为小正方体体积的2/3。

  在讲图6 的水平截面之前,教师有必要与学生一起对图6 作深入观察。学生应能理解弧AE,AG实则为大圆周长的1/4,AF为牟合方盖的棱的一部分。明确这些之后,教师可与学生一起讨论图6 立体的水平截面(见图7)。

  图7 中,设球半径为r,取截面高为h,三幅图中阴影部分面积依次为S1,S2,S3。通过勾股定理和比例等知识,易得S1=r2-h2,S2=S3=h2。由截面原理 ,故 。再由V球∶V牟合方盖=π∶4,得 。

  图6

 

  图7


  三、进一步地反思

  教学中引入数学史料可以有多种教学功能,不仅可以拓展学生的视野,激发学习兴趣,而且可以让学生在“再发现”和“再创造”的过程中感悟其中的数学思想及精髓,为锻炼学生思维提供绝佳契机。在经历了古人的探索过程后,教师可进一步引导学生进行反思。

  思考一:牟合方盖的体积计算还有其他方法吗

  祖暅在计算牟合方盖体积时利用了对称性,首先计算1/8 的体积。教师可以鼓励学生对此方法作进一步拓展。能不能首先计算1/4 或者1/2 的体积呢?如何借助截面原理构造新的立体呢?以1/2 牟合方盖(图8(1))为例,设球半径为r,则高h处的截面面积为4(r2-h2)。教师可引导学生运用类比思想,得出形如图8(2)的新立体—与1/2 牟合方盖同底等高的柱体挖去一个同底等高的倒方锥。显然,两副图中阴影部分面积相同。进而借助新立体求得1/2牟合方盖的体积。

  图8

  图9

  思考二:球体积公式的推导能否简化

  中国古人计算球体积利用了其外套“牟合方盖”间接求得。教师可引导学生简化推导过程,如果不利用牟合方盖,是否可以直接利用截面原理得出球体积公式?考虑半个球体,若球半径为r,截面高为h处的水平截面圆面积为 π(r2-h2),这时构造的新立体截面积等于两圆之差(如图9),该新立体为与半球同底等高的圆柱内挖掉一个同底等高的圆锥。这就是我们通常在教科书上看到的推导方法。

  经过这样一些步骤的改进,学生不仅可以知晓古人的计算方法,赞叹古人的聪明才智;更能通过自己的智慧改进古人的方法,拓展思维,求简求优。

  通过上述推导过程得出球体积公式,相信学生对截面原理会有更深刻地理解,对于中国古代计算球体积过程中的重要创造———牟合方盖的产生及体积计算会有更深入的体会。这里我们只是对牟合方盖法教学中可能遇到的难点进行分析,以期对教师的教学设计有借鉴作用。而合适的教学融入方式,则有待教师作进一步的尝试与探究。

  参考文献
  [1]任明骏.关于球体积公式教学各异的调查与分析[J].数学教学,2005(4).
  [2]汪晓勤.HPM的若干研究与展望[J].中学数学月刊,2012(2).
  [3]李继闵.《九章算术》及其刘徽注研究[M].太原:山西人民教育出版社,1990.

联系我们
  • 写作QQ:78307562
  • 发表QQ:78303642
  • 服务电话:18930620780
  • 售后电话:18930493766
  • 邮箱:lunwen021@163.com
范文范例
网站地图 | 网站介绍 | 联系我们 | 服务承诺| 服务报价| 论文要求 | 期刊发表 | 服务流程